Online mode
CaptainFantastic01
Posts: 9,558 Member
Ai is now online
0
Replies
-
This content has been removed.
-
CookingWithCumin wrote: »ENGAGE FLUX CAPACITATOR
GET ME SOME URANIUM0 -
CaptainFantastic01 wrote: »CookingWithCumin wrote: »ENGAGE FLUX CAPACITATOR
GET ME SOME URANIUM
I got you fam!
0 -
CaptainFantastic01 wrote: »CookingWithCumin wrote: »ENGAGE FLUX CAPACITATOR
GET ME SOME URANIUM
I got you fam!
WHERE WE’RE GOING WE DONT NEED ROADS0 -
CaptainFantastic01 wrote: »CaptainFantastic01 wrote: »CookingWithCumin wrote: »ENGAGE FLUX CAPACITATOR
GET ME SOME URANIUM
I got you fam!
WHERE WE’RE GOING WE DONT NEED ROADS
I would argue that roads are, in fact, quite useful.1 -
CaptainFantastic01 wrote: »CaptainFantastic01 wrote: »CookingWithCumin wrote: »ENGAGE FLUX CAPACITATOR
GET ME SOME URANIUM
I got you fam!
WHERE WE’RE GOING WE DONT NEED ROADS
I would argue that roads are, in fact, quite useful.
Get me your twelve page double sided single spaced essay about it by Friday0 -
This content has been removed.
-
JustReadTheInstructions wrote: »CaptainFantastic01 wrote: »CaptainFantastic01 wrote: »CaptainFantastic01 wrote: »CookingWithCumin wrote: »ENGAGE FLUX CAPACITATOR
GET ME SOME URANIUM
I got you fam!
WHERE WE’RE GOING WE DONT NEED ROADS
I would argue that roads are, in fact, quite useful.
Get me your twelve page double sided single spaced essay about it by Friday
Knowing @cee134 it's probably something he already has started
Feel free to send it to me at plzdonttellmywide@aol.com0 -
Does Cyberdyne make a flux capacitor?0
-
CaptainFantastic01 wrote: »Get me your twelve page double sided single spaced essay about it by Friday
Roads and highways are a traveled way on which people (like CaptainFantastic01 who may be a thespian), animals, or wheeled vehicles move. In modern usage the term road describes a rural, lesser traveled way, while the word street denotes an urban roadway. Highway refers to a major rural traveled way; more recently it has been used for a road, in either a rural or urban area, where points of entrance and exit for traffic are limited and controlled.
The most ancient name for these arteries of travel seems to be the antecedent of the modern way. Way stems from the Middle English wey, which in turn branches from the Latin veho (“I carry”), derived from the Sanskrit vah (“carry,” “go,” or “move”). The word highway goes back to the elevated Roman roads that had a mound or hill formed by earth from the side ditches thrown toward the centre, thus high way. The word street originates with the Latin strata (initially, “paved”) and later strata via (“a way paved with stones”). Street was used by the Anglo-Saxons for all the roads that they inherited from the Romans. By the Middle Ages, constructed roads were to be found only in the towns, and so street took on its modern limited application to town roads. The more recent word road, derived from the Old English word rád (“to ride”) and the Middle English rode or rade (“a mounted journey”), is now used to indicate all vehicular ways.
Modern roads can be classified by type or function. The basic type is the conventional undivided two-way road. Beyond this are divided roads, expressways (divided roads with most side access controlled and some minor at-grade intersections), and freeways (expressways with side access fully controlled and no at-grade intersections). An access-controlled road with direct user charges is known as a tollway. In the United Kingdom freeways and expressways are referred to as motorways.
Functional road types are local streets, which serve only adjacent properties and do not carry through traffic; collector, distributor, and feeder roads, which carry only through traffic from their own area; arterial roads, which carry through traffic from adjacent areas and are the major roads within a region or population centre; and highways, which are the major roads between regions or population centres.
The first half of this article traces the history of roads from earliest times to the present, exploring the factors that have influenced their development and suggesting that in many ways roads have directly reflected the conditions and attitudes of their times. The road is thus one of the oldest continuous and traceable metaphors for civilization and society. The second half of the article explains the factors behind the design, construction, and operation of a modern road. It is shown that a road must interact closely and carefully with the terrain and community through which it passes, with changing vehicle technology, with information technologies, and with the various abilities, deficiencies, and frailties of the individual driver.
London’s most striking physical feature is the absence of a grand road layout. Town planners have made repeated attempts to impose a greater degree of formal order on the capital. The most celebrated efforts in modern times have been Sir Patrick Abercrombie’s Greater London…
Roads of antiquity
Ancient roads of the Mediterranean and Middle East
The first roads were paths made by animals and later adapted by humans. The earliest records of such paths have been found around some springs near Jericho and date from about 6000 BC. The first indications of constructed roads date from about 4000 BC and consist of stone-paved streets at Ur in modern-day Iraq and timber roads preserved in a swamp in Glastonbury, England. During the Bronze Age, the availability of metal tools made the construction of stone paving more feasible; at the same time, demand for paved roads rose with the use of wheeled vehicles, which were well established by 2000 BC.
Cretan stone roads
At about this time the Minoans on the island of Crete built a 30-mile (50-kilometre) road from Gortyna on the south coast over the mountains at an elevation of about 4,300 feet (1,300 metres) to Knossos on the north coast. Constructed of layers of stone, the roadway took account of the necessity of drainage by a crown throughout its length and even gutters along certain sections. The pavement, which was about 12 feet (360 centimetres) wide, consisted of sandstone bound by a clay-gypsum mortar. The surface of the central portion consisted of two rows of basalt slabs 2 inches (50 millimetres) thick. The centre of the roadway seems to have been used for foot traffic and the edges for animals and carts. It is the oldest existing paved road.
Roads of Persia and Babylon
The earliest long-distance road was a 1,500-mile route between the Persian Gulf and the Mediterranean Sea. It came into some use about 3500 BC, but it was operated in an organized way only from about 1200 BC by the Assyrians, who used it to join Susa, near the Persian Gulf, to the Mediterranean ports of Smyrna (İzmir) and Ephesus. More a track than a constructed road, the route was duplicated between 550 and 486 BC by the great Persian kings Cyrus II and Darius I in their famous Royal Road. Like its predecessor, the Persian Royal Road began at Susa, wound northwestward to Arbela, and thence proceeded westward through Nineveh to Harran, a major road junction and caravan centre. The main road then continued to twin termini at Smyrna and Ephesus. The Greek historian Herodotus, writing about 475 BC, put the time for the journey from Susa to Ephesus at 93 days, although royal riders traversed the route in 20 days.
In Babylon about 615 BC the Chaldeans connected the city’s temples to the royal palaces with the Processional Way, a major road in which burned bricks and carefully shaped stones were laid in bituminous mortar.
Egypt
Herodotus credits the Egyptians with building their first roads to provide a solid track upon which to haul the immense limestone blocks used in the pyramids, and archaeological evidence indicates that such road building took place southwest of Cairo between 2600 and 2200 BC. The wheel arrived in Egypt at the relatively late date of about 1600 BC. There is little evidence of street surfacing in ancient Egyptian towns, though there is evidence of the use of paved processional roads leading to the temples. The ancient travel routes of Egypt ran from Thebes and Coptos on the central Nile east to the Red Sea and from Memphis (Cairo) across the land bridge to Asia Minor.
Greece
The early Greeks depended primarily on sea travel. There is evidence of the building of special roads for religious purposes and transport about 800 BC, but there is little evidence of substantial road building for travel and transport prior to the Roman system. The Greeks did build a few ceremonial, or “sacred,” roads, paved with shaped stone and containing wheel ruts about 55 inches (140 centimetres) apart.
Ancient roads of Europe
The Amber Routes
During the 2nd millennium BC, trade ways developed in Europe. One route, for example, ran between Italy and Spain via Marseille and nearby Heraclea, close to present-day Avignon, France. Such ways were used for the movement of flints from Denmark, freestone from Belgium, salt from Austria, lead and tin from England, and amber from northern Europe. By about 1500 BC many of the ways in eastern and central Europe had linked together into an extensive trading network known as the Amber Routes. Four routes have been identified, the first from modern Hamburg, Germany, southwestward by dual routes through Cologne and Frankfurt to Lyon and Marseille. The second also passed from Hamburg south to Passau on the Danube and then through the Brenner Pass to Venice. The third began at Samland on the East Prussian coast (where amber is still found), crossed the Vistula River at Thorn, and thence continued southeastward through the Moravian Gate to Aquileia on the Adriatic. The fourth, the Baltic-Pontus road, followed the main eastern rivers, the Vistula, Saw, Sereth, Prut, Bug, and Dnieper.
While the Amber Routes were not roads in the modern sense, they were improved at river crossings, over mountain passes, and across wet and swampy areas. A few remnants of these roads survive today. They were constructed by laying two or three strings of logs in the direction of the road on a bed of branches and boughs up to 20 feet (6 metres) wide. This layer was then covered with a layer of transverse logs 9 to 12 feet in length laid side by side. In the best log roads, every fifth or sixth log was fastened to the underlying subsoil with pegs. There is evidence that the older log roads were built prior to 1500 BC. They were maintained in a level state by being covered with sand and gravel or sod. In addition, the Romans used side ditches to reduce the moisture content and increase the carrying capacity.
The Roman roads
The greatest systematic road builders of the ancient world were the Romans, who were very conscious of the military, economic, and administrative advantages of a good road system. The Romans drew their expertise mainly from the Etruscans—particularly in cement technology and street paving—though they probably also learned skills from the Greeks (masonry), Cretans, Carthaginians (pavement structure), Phoenicians, and Egyptians (surveying). Concrete made from cement was a major development that permitted many of Rome’s construction advances.
The Romans began their road-making task in 334 BC and by the peak of the empire had built nearly 53,000 miles of road connecting their capital with the frontiers of their far-flung empire. Twenty-nine great military roads, the viae militares, radiated from Rome. The most famous of these was the Appian Way. Begun in 312 BC, this road eventually followed the Mediterranean coast south to Capua and then turned eastward to Beneventum, where it divided into two branches, both reaching Brundisium (Brindisi). From Brundisium the Appian Way traversed the Adriatic coast to Hydruntum, a total of 410 miles from Rome.
The typical Roman road was bold in conception and construction. Where possible, it was built in a straight line from one sighting point to the next, regardless of obstacles, and was carried over marshes, lakes, ravines, and mountains. In its highest stage of development, it was constructed by excavating parallel trenches about 40 feet apart to provide longitudinal drainage—a hallmark of Roman road engineering. The foundation was then raised about three feet above ground level, employing material taken from the drains and from the adjacent cleared ground. As the importance of the road increased, this embankment was progressively covered with a light bedding of sand or mortar on which four main courses were constructed: (1) the statumen layer 10 to 24 inches (250 to 600 millimetres) thick, composed of stones at least 2 inches in size, (2) the rudus, a 9-inch-thick layer of concrete made from stones under 2 inches in size, (3) the nucleus layer, about 12 inches thick, using concrete made from small gravel and coarse sand, and, for very important roads, (4) the summum dorsum, a wearing surface of large stone slabs at least 6 inches deep. The total thickness thus varied from 3 to 6 feet. The width of the Appian Way in its ultimate development was 35 feet. The two-way, heavily crowned central carriageway was 15 feet wide. On each side it was flanked by curbs 2 feet wide and 18 inches high and paralleled by one-way side lanes 7 feet wide. This massive Roman road section, adopted about 300 BC, set the standard of practice for the next 2,000 years.
The public transport of the Roman Empire was divided into two classes: (1) cursus rapidi, the express service, and (2) agnarie, the freight service. In addition, there was an enormous amount of travel by private individuals. The two most widely used vehicles were the two-wheeled chariot drawn by two or four horses and its companion, the cart used in rural areas. A four-wheeled raeda in its passenger version corresponded to the stagecoaches of a later period and in its cargo version to the freight wagons. Fast freight raedae were drawn by 8 horses in summer and 10 in winter and, by law, could not haul in excess of 750 pounds (340 kilograms). Speed of travel ranged from a low of about 15 miles per day for freight vehicles to 75 miles per day by speedy post drivers.
Ancient roads of South and East Asia
India
The Indus civilization in Sindh, Balochistān, and the Punjab probably flourished in the period 3250–2750 BC. Excavations indicate that the cities of this civilization paved their major streets with burned bricks cemented with bitumen. Great attention was devoted to drainage. The houses had drainpipes that carried the water to a street drain in the centre of the street, two to four feet deep and covered with slabs or bricks.
Evidence from archaeological and historical sources indicates that by AD 75 several methods of road construction were known in India. These included the brick pavement, the stone slab pavement, a kind of concrete as a foundation course or as an actual road surface, and the principles of grouting (filling crevices) with gypsum, lime, or bituminous mortar. Street paving seems to have been common in the towns in India at the beginning of the Common Era, and the principles of drainage were well known. The crowning of the roadway and the use of ditches and gutters were common in the towns. Northern and western India in the period 300 to 150 BC had a network of well-built roads. The rulers of the Mauryan empire (4th century BC), which stretched from the Indus River to the Brahmaputra River and from the Himalayas to the Vindhya Range, generally recognized that the unity of a great empire depended on the quality of its roads. The Great Royal Road of the Mauryans began at the Himalayan border, ran through Taxila (near modern Rāwalpindi, Pakistan), crossed the five streams of the Punjab, proceeded by way of Jumna to Prayag (now Allahābād, India), and continued to the mouth of the Ganges River. A “Ministry of Public Works” was responsible for construction, marking, and maintenance of the roads and rest houses and for the smooth running of ferries.
China’s Imperial Highway
China had a road system that paralleled the Persian Royal Road and the Roman road network in time and purpose. Its major development began under Emperor Shihuangdi about 220 BC. Many of the roads were wide, surfaced with stone, and lined with trees; steep mountains were traversed by stone-paved stairways with broad treads and low steps. By AD 700 the network had grown to some 25,000 miles (about 40,000 kilometres). Traces of a key route near Xi’an are still visible.
The Silk Road
The trade route from China to Asia Minor and India, known as the Silk Road, had been in existence for 1,400 years at the time of Marco Polo’s travels (c. AD 1270–90). It came into partial existence about 300 BC, when it was used to bring jade from Khotan (modern Hotan, China) to China. By 200 BC it was linked to the West, and by 100 BC it was carrying active trade between the two civilizations. At its zenith in AD 200 this road and its western connections over the Roman system constituted the longest road on Earth. In Asia the road passed through Samarkand to the region of Fergana, where, near the city of Osh, a stone tower marked the symbolic watershed between East and West. From Fergana the road traversed the valley between the Tien Shan and Kunlun Mountains through Kashgar, where it divided and skirted both sides of the Takla Makan Desert to join again at Yuanquan. The road then wound eastward to Jiayuguan (Suzhou), where it passed through the westernmost gateway (the Jade Gate, or Yumen) of the Great Wall of China. It then went southeast on the Imperial Highway to Xi’an and eastward to Shanghai on the Pacific Ocean. From Kashgar, trade routes to the south passed over the mountains to the great trading centre of Bactria and to northern Kashmir.
The Middle Ages
Europe and Asia
At the zenith of the Roman Empire, overland trade joined the cultures of Europe, North Africa, Asia Minor, China, and India. But the system of road transport was dependent on the Roman, Chinese, and Mauryan empires, and, as these great empires declined in the early Christian era, the trade routes became routes of invasion. Except in the Byzantine Empire, road networks fell into centuries of disrepair. Transport relied on pack trains, which could negotiate the badly maintained roads and sufficed to carry the reduced stream of commerce.
The first signs of a road revival came during the reign of Charlemagne late in the 8th century. In the 9th century the Moors established an extensive street network in Córdoba, Spain. The Vikings operated the Varangian Road, a major trade route linking the Baltic and the Middle East via Russia. Further road revival was aided first by the need to service the regular round of trade fairs and then, in the 11th century, by a centralization of power and an increase in religious fervour.
Eventually a commercial revival set in. By the 12th century old cities were reviving and new ones were being built, especially in western Europe. Street paving became a reputable artisan activity, and by the 15th century well-maintained roads bringing food to the cities from their hinterlands were of critical importance. At the same time, wheeled vehicles increased in number and quality. There was an awakened interest in better overland travel, better protection of merchants and other travelers, and the improvement of roads. Public funds, chiefly derived from tolls, were committed to road upkeep. The corvée, or road-labour tax, made an even more substantial contribution. Long-distance overland commerce increased rapidly and included a restoration of the trade route between Europe and China through Central Asia that Marco Polo traveled in the late 13th century.
Inca roads of South America
Across the Atlantic, the period witnessed the rise of another notable road-building empire, that of the Incas. The Inca road system extended from Quito, Ecuador, through Cuzco, Peru, and as far south as Santiago, Chile. It included two parallel roadways, one along the coast about 2,250 miles in length, the other following the Andes about 3,400 miles in length with a number of cross connections. At its zenith, when the Spaniards arrived early in the 16th century, a network of some 14,000 miles of road served an area of about 750,000 square miles (1,940,000 square kilometres) in which lived nearly 10 million people. The network was praised by 16th-century explorers as superior to that in contemporary Europe.
The Andes route was remarkable. The roadway was 25 feet wide and traversed the loftiest ranges. It included galleries cut into solid rock and retaining walls built up for hundreds of feet to support the roadway. Ravines and chasms were filled with solid masonry, suspension bridges with wool or fibre cables crossed the wider mountain streams, and stone surfacing was used in difficult areas. The steeper gradients were surmounted by steps cut in the rocks. Traffic consisted entirely of pack animals (llamas) and people on foot; the Inca lacked the wheel. Yet they operated a swift foot courier system and a visual signaling system along the roadway from watchtower to watchtower.
In Europe, gradual technological improvements in the 17th and 18th centuries saw increased commercial travel, improved vehicles, and the breeding of better horses. These factors created an incessant demand for better roads, and supply and invention both rose to meet that demand. In 1585 the Italian engineer Guido Toglietta wrote a thoughtful treatise on a pavement system using broken stone that represented a marked advance on the heavy Roman style. In 1607 Thomas Procter published the first English-language book on roads. The first highway engineering school in Europe, the School of Bridges and Highways, was founded in Paris in 1747. Late in the 18th century the Scottish political economist Adam Smith, in discussing conditions in England, wrote,
Good roads, canals, and navigable rivers, by diminishing the expense of carriage, put the remote parts of the country more nearly upon a level with those in the neighbourhood of a town. They are upon that account the greatest of all improvements.
Up to this time roads had been built, with minor modifications, to the heavy Roman cross section, but in the last half of the 18th century the fathers of modern road building and road maintenance appeared in France and Britain.
McAdam
The greatest advance came from John Loudon McAdam, born in 1756 at Ayr in Scotland. McAdam began his road-building career in 1787 but reached major heights after 1804, when he was appointed general surveyor for Bristol, then the most important port city in England. The roads leading to Bristol were in poor condition, and in 1816 McAdam took control of the Bristol Turnpike. There he showed that traffic could be supported by a relatively thin layer of small, single-sized, angular pieces of broken stone placed and compacted on a well-drained natural formation and covered by an impermeable surface of smaller stones. He had no use for the masonry constructions of his predecessors and contemporaries.
Drainage was essential to the success of McAdam’s method, and he required the pavement to be elevated above the surrounding surface. The structural layer of broken stone (as shown in the figure, bottom) was eight inches thick and used stone of two to three inches maximum size laid in layers and compacted by traffic—a process adequate for the traffic of the time. The top layer was two inches thick, using three-fourths- to one-inch stone to fill surface voids between the large stones. Continuing maintenance was essential.
Although McAdam drew on the successes and failures of others, his total structural reliance on broken stone represented the largest paradigm shift in the history of road pavements. The principles of the “macadam” road are still used today. McAdam’s success was also due to his efficient administration and his strong view that road managers needed skill and motivation.
Early U.S. road systems
The Lancaster Turnpike
The first engineered and planned road in the United States was the Lancaster Turnpike, a privately constructed toll road built between 1793 and 1795. Connecting Philadelphia and Lancaster in Pennsylvania, its 62-mile length had a maximum grade of 7 percent and was surfaced with broken stone and gravel in a manner initially uninfluenced by the work of Telford and McAdam. However, pavement failures in 1796 led to the introduction of some of the new European methods.
The Cumberland Road
The Cumberland Road, also known as the National Pike, was an even more notable road-building feat. It had been advocated by both George Washington and Thomas Jefferson to aid western expansion and national unity. Work commenced in 1811, and the road opened for traffic between Cumberland, Maryland, and Wheeling, West Virginia, in 1818. By 1838 it extended to Springfield, Ohio, and part of the way to Vandalia, Illinois. Specification requirements called for a 66-foot right-of-way completely cleared. The roadway was to be covered 20 feet in width with stone 18 inches deep at the centre and 12 inches deep at the edge. The upper six inches were to consist of broken stone of three-inch maximum size and the lower stratum of stone of seven-inch maximum size. The road was constructed by the federal government, much of the finance being raised by land sales. Although maintenance was funded by tolls and federal appropriations, the road surface began to deteriorate in the 1820s. Federal funding ceased in 1838, and in 1841 the project was abandoned at Vandalia for political and practical reasons.
5 -
CaptainFantastic01 wrote: »Get me your twelve page double sided single spaced essay about it by Friday
Roads and highways are a traveled way on....blah....blah.....blah....
2 -
So I read all that and it said nothing about needing roads where we are going. Additionally your margins are too large. You fail this assignment1
-
SirMxyzptlk wrote: »CaptainFantastic01 wrote: »Get me your twelve page double sided single spaced essay about it by Friday
Roads and highways are a traveled way on....blah....blah.....blah....
Aw fuzzy bunny0 -
This content has been removed.
-
CaptainFantastic01 wrote: »Get me your twelve page double sided single spaced essay about it by Friday
Roads and highways are a traveled way on which people (like CaptainFantastic01 who may be a thespian), animals, or wheeled vehicles move. In modern usage the term road describes a rural, lesser traveled way, while the word street denotes an urban roadway. Highway refers to a major rural traveled way; more recently it has been used for a road, in either a rural or urban area, where points of entrance and exit for traffic are limited and controlled.
The most ancient name for these arteries of travel seems to be the antecedent of the modern way. Way stems from the Middle English wey, which in turn branches from the Latin veho (“I carry”), derived from the Sanskrit vah (“carry,” “go,” or “move”). The word highway goes back to the elevated Roman roads that had a mound or hill formed by earth from the side ditches thrown toward the centre, thus high way. The word street originates with the Latin strata (initially, “paved”) and later strata via (“a way paved with stones”). Street was used by the Anglo-Saxons for all the roads that they inherited from the Romans. By the Middle Ages, constructed roads were to be found only in the towns, and so street took on its modern limited application to town roads. The more recent word road, derived from the Old English word rád (“to ride”) and the Middle English rode or rade (“a mounted journey”), is now used to indicate all vehicular ways.
Modern roads can be classified by type or function. The basic type is the conventional undivided two-way road. Beyond this are divided roads, expressways (divided roads with most side access controlled and some minor at-grade intersections), and freeways (expressways with side access fully controlled and no at-grade intersections). An access-controlled road with direct user charges is known as a tollway. In the United Kingdom freeways and expressways are referred to as motorways.
Functional road types are local streets, which serve only adjacent properties and do not carry through traffic; collector, distributor, and feeder roads, which carry only through traffic from their own area; arterial roads, which carry through traffic from adjacent areas and are the major roads within a region or population centre; and highways, which are the major roads between regions or population centres.
The first half of this article traces the history of roads from earliest times to the present, exploring the factors that have influenced their development and suggesting that in many ways roads have directly reflected the conditions and attitudes of their times. The road is thus one of the oldest continuous and traceable metaphors for civilization and society. The second half of the article explains the factors behind the design, construction, and operation of a modern road. It is shown that a road must interact closely and carefully with the terrain and community through which it passes, with changing vehicle technology, with information technologies, and with the various abilities, deficiencies, and frailties of the individual driver.
London’s most striking physical feature is the absence of a grand road layout. Town planners have made repeated attempts to impose a greater degree of formal order on the capital. The most celebrated efforts in modern times have been Sir Patrick Abercrombie’s Greater London…
Roads of antiquity
Ancient roads of the Mediterranean and Middle East
The first roads were paths made by animals and later adapted by humans. The earliest records of such paths have been found around some springs near Jericho and date from about 6000 BC. The first indications of constructed roads date from about 4000 BC and consist of stone-paved streets at Ur in modern-day Iraq and timber roads preserved in a swamp in Glastonbury, England. During the Bronze Age, the availability of metal tools made the construction of stone paving more feasible; at the same time, demand for paved roads rose with the use of wheeled vehicles, which were well established by 2000 BC.
Cretan stone roads
At about this time the Minoans on the island of Crete built a 30-mile (50-kilometre) road from Gortyna on the south coast over the mountains at an elevation of about 4,300 feet (1,300 metres) to Knossos on the north coast. Constructed of layers of stone, the roadway took account of the necessity of drainage by a crown throughout its length and even gutters along certain sections. The pavement, which was about 12 feet (360 centimetres) wide, consisted of sandstone bound by a clay-gypsum mortar. The surface of the central portion consisted of two rows of basalt slabs 2 inches (50 millimetres) thick. The centre of the roadway seems to have been used for foot traffic and the edges for animals and carts. It is the oldest existing paved road.
Roads of Persia and Babylon
The earliest long-distance road was a 1,500-mile route between the Persian Gulf and the Mediterranean Sea. It came into some use about 3500 BC, but it was operated in an organized way only from about 1200 BC by the Assyrians, who used it to join Susa, near the Persian Gulf, to the Mediterranean ports of Smyrna (İzmir) and Ephesus. More a track than a constructed road, the route was duplicated between 550 and 486 BC by the great Persian kings Cyrus II and Darius I in their famous Royal Road. Like its predecessor, the Persian Royal Road began at Susa, wound northwestward to Arbela, and thence proceeded westward through Nineveh to Harran, a major road junction and caravan centre. The main road then continued to twin termini at Smyrna and Ephesus. The Greek historian Herodotus, writing about 475 BC, put the time for the journey from Susa to Ephesus at 93 days, although royal riders traversed the route in 20 days.
In Babylon about 615 BC the Chaldeans connected the city’s temples to the royal palaces with the Processional Way, a major road in which burned bricks and carefully shaped stones were laid in bituminous mortar.
Egypt
Herodotus credits the Egyptians with building their first roads to provide a solid track upon which to haul the immense limestone blocks used in the pyramids, and archaeological evidence indicates that such road building took place southwest of Cairo between 2600 and 2200 BC. The wheel arrived in Egypt at the relatively late date of about 1600 BC. There is little evidence of street surfacing in ancient Egyptian towns, though there is evidence of the use of paved processional roads leading to the temples. The ancient travel routes of Egypt ran from Thebes and Coptos on the central Nile east to the Red Sea and from Memphis (Cairo) across the land bridge to Asia Minor.
Greece
The early Greeks depended primarily on sea travel. There is evidence of the building of special roads for religious purposes and transport about 800 BC, but there is little evidence of substantial road building for travel and transport prior to the Roman system. The Greeks did build a few ceremonial, or “sacred,” roads, paved with shaped stone and containing wheel ruts about 55 inches (140 centimetres) apart.
Ancient roads of Europe
The Amber Routes
During the 2nd millennium BC, trade ways developed in Europe. One route, for example, ran between Italy and Spain via Marseille and nearby Heraclea, close to present-day Avignon, France. Such ways were used for the movement of flints from Denmark, freestone from Belgium, salt from Austria, lead and tin from England, and amber from northern Europe. By about 1500 BC many of the ways in eastern and central Europe had linked together into an extensive trading network known as the Amber Routes. Four routes have been identified, the first from modern Hamburg, Germany, southwestward by dual routes through Cologne and Frankfurt to Lyon and Marseille. The second also passed from Hamburg south to Passau on the Danube and then through the Brenner Pass to Venice. The third began at Samland on the East Prussian coast (where amber is still found), crossed the Vistula River at Thorn, and thence continued southeastward through the Moravian Gate to Aquileia on the Adriatic. The fourth, the Baltic-Pontus road, followed the main eastern rivers, the Vistula, Saw, Sereth, Prut, Bug, and Dnieper.
While the Amber Routes were not roads in the modern sense, they were improved at river crossings, over mountain passes, and across wet and swampy areas. A few remnants of these roads survive today. They were constructed by laying two or three strings of logs in the direction of the road on a bed of branches and boughs up to 20 feet (6 metres) wide. This layer was then covered with a layer of transverse logs 9 to 12 feet in length laid side by side. In the best log roads, every fifth or sixth log was fastened to the underlying subsoil with pegs. There is evidence that the older log roads were built prior to 1500 BC. They were maintained in a level state by being covered with sand and gravel or sod. In addition, the Romans used side ditches to reduce the moisture content and increase the carrying capacity.
The Roman roads
The greatest systematic road builders of the ancient world were the Romans, who were very conscious of the military, economic, and administrative advantages of a good road system. The Romans drew their expertise mainly from the Etruscans—particularly in cement technology and street paving—though they probably also learned skills from the Greeks (masonry), Cretans, Carthaginians (pavement structure), Phoenicians, and Egyptians (surveying). Concrete made from cement was a major development that permitted many of Rome’s construction advances.
The Romans began their road-making task in 334 BC and by the peak of the empire had built nearly 53,000 miles of road connecting their capital with the frontiers of their far-flung empire. Twenty-nine great military roads, the viae militares, radiated from Rome. The most famous of these was the Appian Way. Begun in 312 BC, this road eventually followed the Mediterranean coast south to Capua and then turned eastward to Beneventum, where it divided into two branches, both reaching Brundisium (Brindisi). From Brundisium the Appian Way traversed the Adriatic coast to Hydruntum, a total of 410 miles from Rome.
The typical Roman road was bold in conception and construction. Where possible, it was built in a straight line from one sighting point to the next, regardless of obstacles, and was carried over marshes, lakes, ravines, and mountains. In its highest stage of development, it was constructed by excavating parallel trenches about 40 feet apart to provide longitudinal drainage—a hallmark of Roman road engineering. The foundation was then raised about three feet above ground level, employing material taken from the drains and from the adjacent cleared ground. As the importance of the road increased, this embankment was progressively covered with a light bedding of sand or mortar on which four main courses were constructed: (1) the statumen layer 10 to 24 inches (250 to 600 millimetres) thick, composed of stones at least 2 inches in size, (2) the rudus, a 9-inch-thick layer of concrete made from stones under 2 inches in size, (3) the nucleus layer, about 12 inches thick, using concrete made from small gravel and coarse sand, and, for very important roads, (4) the summum dorsum, a wearing surface of large stone slabs at least 6 inches deep. The total thickness thus varied from 3 to 6 feet. The width of the Appian Way in its ultimate development was 35 feet. The two-way, heavily crowned central carriageway was 15 feet wide. On each side it was flanked by curbs 2 feet wide and 18 inches high and paralleled by one-way side lanes 7 feet wide. This massive Roman road section, adopted about 300 BC, set the standard of practice for the next 2,000 years.
The public transport of the Roman Empire was divided into two classes: (1) cursus rapidi, the express service, and (2) agnarie, the freight service. In addition, there was an enormous amount of travel by private individuals. The two most widely used vehicles were the two-wheeled chariot drawn by two or four horses and its companion, the cart used in rural areas. A four-wheeled raeda in its passenger version corresponded to the stagecoaches of a later period and in its cargo version to the freight wagons. Fast freight raedae were drawn by 8 horses in summer and 10 in winter and, by law, could not haul in excess of 750 pounds (340 kilograms). Speed of travel ranged from a low of about 15 miles per day for freight vehicles to 75 miles per day by speedy post drivers.
Ancient roads of South and East Asia
India
The Indus civilization in Sindh, Balochistān, and the Punjab probably flourished in the period 3250–2750 BC. Excavations indicate that the cities of this civilization paved their major streets with burned bricks cemented with bitumen. Great attention was devoted to drainage. The houses had drainpipes that carried the water to a street drain in the centre of the street, two to four feet deep and covered with slabs or bricks.
Evidence from archaeological and historical sources indicates that by AD 75 several methods of road construction were known in India. These included the brick pavement, the stone slab pavement, a kind of concrete as a foundation course or as an actual road surface, and the principles of grouting (filling crevices) with gypsum, lime, or bituminous mortar. Street paving seems to have been common in the towns in India at the beginning of the Common Era, and the principles of drainage were well known. The crowning of the roadway and the use of ditches and gutters were common in the towns. Northern and western India in the period 300 to 150 BC had a network of well-built roads. The rulers of the Mauryan empire (4th century BC), which stretched from the Indus River to the Brahmaputra River and from the Himalayas to the Vindhya Range, generally recognized that the unity of a great empire depended on the quality of its roads. The Great Royal Road of the Mauryans began at the Himalayan border, ran through Taxila (near modern Rāwalpindi, Pakistan), crossed the five streams of the Punjab, proceeded by way of Jumna to Prayag (now Allahābād, India), and continued to the mouth of the Ganges River. A “Ministry of Public Works” was responsible for construction, marking, and maintenance of the roads and rest houses and for the smooth running of ferries.
China’s Imperial Highway
China had a road system that paralleled the Persian Royal Road and the Roman road network in time and purpose. Its major development began under Emperor Shihuangdi about 220 BC. Many of the roads were wide, surfaced with stone, and lined with trees; steep mountains were traversed by stone-paved stairways with broad treads and low steps. By AD 700 the network had grown to some 25,000 miles (about 40,000 kilometres). Traces of a key route near Xi’an are still visible.
The Silk Road
The trade route from China to Asia Minor and India, known as the Silk Road, had been in existence for 1,400 years at the time of Marco Polo’s travels (c. AD 1270–90). It came into partial existence about 300 BC, when it was used to bring jade from Khotan (modern Hotan, China) to China. By 200 BC it was linked to the West, and by 100 BC it was carrying active trade between the two civilizations. At its zenith in AD 200 this road and its western connections over the Roman system constituted the longest road on Earth. In Asia the road passed through Samarkand to the region of Fergana, where, near the city of Osh, a stone tower marked the symbolic watershed between East and West. From Fergana the road traversed the valley between the Tien Shan and Kunlun Mountains through Kashgar, where it divided and skirted both sides of the Takla Makan Desert to join again at Yuanquan. The road then wound eastward to Jiayuguan (Suzhou), where it passed through the westernmost gateway (the Jade Gate, or Yumen) of the Great Wall of China. It then went southeast on the Imperial Highway to Xi’an and eastward to Shanghai on the Pacific Ocean. From Kashgar, trade routes to the south passed over the mountains to the great trading centre of Bactria and to northern Kashmir.
The Middle Ages
Europe and Asia
At the zenith of the Roman Empire, overland trade joined the cultures of Europe, North Africa, Asia Minor, China, and India. But the system of road transport was dependent on the Roman, Chinese, and Mauryan empires, and, as these great empires declined in the early Christian era, the trade routes became routes of invasion. Except in the Byzantine Empire, road networks fell into centuries of disrepair. Transport relied on pack trains, which could negotiate the badly maintained roads and sufficed to carry the reduced stream of commerce.
The first signs of a road revival came during the reign of Charlemagne late in the 8th century. In the 9th century the Moors established an extensive street network in Córdoba, Spain. The Vikings operated the Varangian Road, a major trade route linking the Baltic and the Middle East via Russia. Further road revival was aided first by the need to service the regular round of trade fairs and then, in the 11th century, by a centralization of power and an increase in religious fervour.
Eventually a commercial revival set in. By the 12th century old cities were reviving and new ones were being built, especially in western Europe. Street paving became a reputable artisan activity, and by the 15th century well-maintained roads bringing food to the cities from their hinterlands were of critical importance. At the same time, wheeled vehicles increased in number and quality. There was an awakened interest in better overland travel, better protection of merchants and other travelers, and the improvement of roads. Public funds, chiefly derived from tolls, were committed to road upkeep. The corvée, or road-labour tax, made an even more substantial contribution. Long-distance overland commerce increased rapidly and included a restoration of the trade route between Europe and China through Central Asia that Marco Polo traveled in the late 13th century.
Inca roads of South America
Across the Atlantic, the period witnessed the rise of another notable road-building empire, that of the Incas. The Inca road system extended from Quito, Ecuador, through Cuzco, Peru, and as far south as Santiago, Chile. It included two parallel roadways, one along the coast about 2,250 miles in length, the other following the Andes about 3,400 miles in length with a number of cross connections. At its zenith, when the Spaniards arrived early in the 16th century, a network of some 14,000 miles of road served an area of about 750,000 square miles (1,940,000 square kilometres) in which lived nearly 10 million people. The network was praised by 16th-century explorers as superior to that in contemporary Europe.
The Andes route was remarkable. The roadway was 25 feet wide and traversed the loftiest ranges. It included galleries cut into solid rock and retaining walls built up for hundreds of feet to support the roadway. Ravines and chasms were filled with solid masonry, suspension bridges with wool or fibre cables crossed the wider mountain streams, and stone surfacing was used in difficult areas. The steeper gradients were surmounted by steps cut in the rocks. Traffic consisted entirely of pack animals (llamas) and people on foot; the Inca lacked the wheel. Yet they operated a swift foot courier system and a visual signaling system along the roadway from watchtower to watchtower.
In Europe, gradual technological improvements in the 17th and 18th centuries saw increased commercial travel, improved vehicles, and the breeding of better horses. These factors created an incessant demand for better roads, and supply and invention both rose to meet that demand. In 1585 the Italian engineer Guido Toglietta wrote a thoughtful treatise on a pavement system using broken stone that represented a marked advance on the heavy Roman style. In 1607 Thomas Procter published the first English-language book on roads. The first highway engineering school in Europe, the School of Bridges and Highways, was founded in Paris in 1747. Late in the 18th century the Scottish political economist Adam Smith, in discussing conditions in England, wrote,
Good roads, canals, and navigable rivers, by diminishing the expense of carriage, put the remote parts of the country more nearly upon a level with those in the neighbourhood of a town. They are upon that account the greatest of all improvements.
Up to this time roads had been built, with minor modifications, to the heavy Roman cross section, but in the last half of the 18th century the fathers of modern road building and road maintenance appeared in France and Britain.
McAdam
The greatest advance came from John Loudon McAdam, born in 1756 at Ayr in Scotland. McAdam began his road-building career in 1787 but reached major heights after 1804, when he was appointed general surveyor for Bristol, then the most important port city in England. The roads leading to Bristol were in poor condition, and in 1816 McAdam took control of the Bristol Turnpike. There he showed that traffic could be supported by a relatively thin layer of small, single-sized, angular pieces of broken stone placed and compacted on a well-drained natural formation and covered by an impermeable surface of smaller stones. He had no use for the masonry constructions of his predecessors and contemporaries.
Drainage was essential to the success of McAdam’s method, and he required the pavement to be elevated above the surrounding surface. The structural layer of broken stone (as shown in the figure, bottom) was eight inches thick and used stone of two to three inches maximum size laid in layers and compacted by traffic—a process adequate for the traffic of the time. The top layer was two inches thick, using three-fourths- to one-inch stone to fill surface voids between the large stones. Continuing maintenance was essential.
Although McAdam drew on the successes and failures of others, his total structural reliance on broken stone represented the largest paradigm shift in the history of road pavements. The principles of the “macadam” road are still used today. McAdam’s success was also due to his efficient administration and his strong view that road managers needed skill and motivation.
Early U.S. road systems
The Lancaster Turnpike
The first engineered and planned road in the United States was the Lancaster Turnpike, a privately constructed toll road built between 1793 and 1795. Connecting Philadelphia and Lancaster in Pennsylvania, its 62-mile length had a maximum grade of 7 percent and was surfaced with broken stone and gravel in a manner initially uninfluenced by the work of Telford and McAdam. However, pavement failures in 1796 led to the introduction of some of the new European methods.
The Cumberland Road
The Cumberland Road, also known as the National Pike, was an even more notable road-building feat. It had been advocated by both George Washington and Thomas Jefferson to aid western expansion and national unity. Work commenced in 1811, and the road opened for traffic between Cumberland, Maryland, and Wheeling, West Virginia, in 1818. By 1838 it extended to Springfield, Ohio, and part of the way to Vandalia, Illinois. Specification requirements called for a 66-foot right-of-way completely cleared. The roadway was to be covered 20 feet in width with stone 18 inches deep at the centre and 12 inches deep at the edge. The upper six inches were to consist of broken stone of three-inch maximum size and the lower stratum of stone of seven-inch maximum size. The road was constructed by the federal government, much of the finance being raised by land sales. Although maintenance was funded by tolls and federal appropriations, the road surface began to deteriorate in the 1820s. Federal funding ceased in 1838, and in 1841 the project was abandoned at Vandalia for political and practical reasons.
Brother I hope you typed this on a keyboard and not your phone.1 -
kinetixtrainer2 wrote: »CaptainFantastic01 wrote: »Get me your twelve page double sided single spaced essay about it by Friday
Roads and highways are a traveled way on which people (like CaptainFantastic01 who may be a thespian), animals, or wheeled vehicles move. In modern usage the term road describes a rural, lesser traveled way, while the word street denotes an urban roadway. Highway refers to a major rural traveled way; more recently it has been used for a road, in either a rural or urban area, where points of entrance and exit for traffic are limited and controlled.
The most ancient name for these arteries of travel seems to be the antecedent of the modern way. Way stems from the Middle English wey, which in turn branches from the Latin veho (“I carry”), derived from the Sanskrit vah (“carry,” “go,” or “move”). The word highway goes back to the elevated Roman roads that had a mound or hill formed by earth from the side ditches thrown toward the centre, thus high way. The word street originates with the Latin strata (initially, “paved”) and later strata via (“a way paved with stones”). Street was used by the Anglo-Saxons for all the roads that they inherited from the Romans. By the Middle Ages, constructed roads were to be found only in the towns, and so street took on its modern limited application to town roads. The more recent word road, derived from the Old English word rád (“to ride”) and the Middle English rode or rade (“a mounted journey”), is now used to indicate all vehicular ways.
Modern roads can be classified by type or function. The basic type is the conventional undivided two-way road. Beyond this are divided roads, expressways (divided roads with most side access controlled and some minor at-grade intersections), and freeways (expressways with side access fully controlled and no at-grade intersections). An access-controlled road with direct user charges is known as a tollway. In the United Kingdom freeways and expressways are referred to as motorways.
Functional road types are local streets, which serve only adjacent properties and do not carry through traffic; collector, distributor, and feeder roads, which carry only through traffic from their own area; arterial roads, which carry through traffic from adjacent areas and are the major roads within a region or population centre; and highways, which are the major roads between regions or population centres.
The first half of this article traces the history of roads from earliest times to the present, exploring the factors that have influenced their development and suggesting that in many ways roads have directly reflected the conditions and attitudes of their times. The road is thus one of the oldest continuous and traceable metaphors for civilization and society. The second half of the article explains the factors behind the design, construction, and operation of a modern road. It is shown that a road must interact closely and carefully with the terrain and community through which it passes, with changing vehicle technology, with information technologies, and with the various abilities, deficiencies, and frailties of the individual driver.
London’s most striking physical feature is the absence of a grand road layout. Town planners have made repeated attempts to impose a greater degree of formal order on the capital. The most celebrated efforts in modern times have been Sir Patrick Abercrombie’s Greater London…
Roads of antiquity
Ancient roads of the Mediterranean and Middle East
The first roads were paths made by animals and later adapted by humans. The earliest records of such paths have been found around some springs near Jericho and date from about 6000 BC. The first indications of constructed roads date from about 4000 BC and consist of stone-paved streets at Ur in modern-day Iraq and timber roads preserved in a swamp in Glastonbury, England. During the Bronze Age, the availability of metal tools made the construction of stone paving more feasible; at the same time, demand for paved roads rose with the use of wheeled vehicles, which were well established by 2000 BC.
Cretan stone roads
At about this time the Minoans on the island of Crete built a 30-mile (50-kilometre) road from Gortyna on the south coast over the mountains at an elevation of about 4,300 feet (1,300 metres) to Knossos on the north coast. Constructed of layers of stone, the roadway took account of the necessity of drainage by a crown throughout its length and even gutters along certain sections. The pavement, which was about 12 feet (360 centimetres) wide, consisted of sandstone bound by a clay-gypsum mortar. The surface of the central portion consisted of two rows of basalt slabs 2 inches (50 millimetres) thick. The centre of the roadway seems to have been used for foot traffic and the edges for animals and carts. It is the oldest existing paved road.
Roads of Persia and Babylon
The earliest long-distance road was a 1,500-mile route between the Persian Gulf and the Mediterranean Sea. It came into some use about 3500 BC, but it was operated in an organized way only from about 1200 BC by the Assyrians, who used it to join Susa, near the Persian Gulf, to the Mediterranean ports of Smyrna (İzmir) and Ephesus. More a track than a constructed road, the route was duplicated between 550 and 486 BC by the great Persian kings Cyrus II and Darius I in their famous Royal Road. Like its predecessor, the Persian Royal Road began at Susa, wound northwestward to Arbela, and thence proceeded westward through Nineveh to Harran, a major road junction and caravan centre. The main road then continued to twin termini at Smyrna and Ephesus. The Greek historian Herodotus, writing about 475 BC, put the time for the journey from Susa to Ephesus at 93 days, although royal riders traversed the route in 20 days.
In Babylon about 615 BC the Chaldeans connected the city’s temples to the royal palaces with the Processional Way, a major road in which burned bricks and carefully shaped stones were laid in bituminous mortar.
Egypt
Herodotus credits the Egyptians with building their first roads to provide a solid track upon which to haul the immense limestone blocks used in the pyramids, and archaeological evidence indicates that such road building took place southwest of Cairo between 2600 and 2200 BC. The wheel arrived in Egypt at the relatively late date of about 1600 BC. There is little evidence of street surfacing in ancient Egyptian towns, though there is evidence of the use of paved processional roads leading to the temples. The ancient travel routes of Egypt ran from Thebes and Coptos on the central Nile east to the Red Sea and from Memphis (Cairo) across the land bridge to Asia Minor.
Greece
The early Greeks depended primarily on sea travel. There is evidence of the building of special roads for religious purposes and transport about 800 BC, but there is little evidence of substantial road building for travel and transport prior to the Roman system. The Greeks did build a few ceremonial, or “sacred,” roads, paved with shaped stone and containing wheel ruts about 55 inches (140 centimetres) apart.
Ancient roads of Europe
The Amber Routes
During the 2nd millennium BC, trade ways developed in Europe. One route, for example, ran between Italy and Spain via Marseille and nearby Heraclea, close to present-day Avignon, France. Such ways were used for the movement of flints from Denmark, freestone from Belgium, salt from Austria, lead and tin from England, and amber from northern Europe. By about 1500 BC many of the ways in eastern and central Europe had linked together into an extensive trading network known as the Amber Routes. Four routes have been identified, the first from modern Hamburg, Germany, southwestward by dual routes through Cologne and Frankfurt to Lyon and Marseille. The second also passed from Hamburg south to Passau on the Danube and then through the Brenner Pass to Venice. The third began at Samland on the East Prussian coast (where amber is still found), crossed the Vistula River at Thorn, and thence continued southeastward through the Moravian Gate to Aquileia on the Adriatic. The fourth, the Baltic-Pontus road, followed the main eastern rivers, the Vistula, Saw, Sereth, Prut, Bug, and Dnieper.
While the Amber Routes were not roads in the modern sense, they were improved at river crossings, over mountain passes, and across wet and swampy areas. A few remnants of these roads survive today. They were constructed by laying two or three strings of logs in the direction of the road on a bed of branches and boughs up to 20 feet (6 metres) wide. This layer was then covered with a layer of transverse logs 9 to 12 feet in length laid side by side. In the best log roads, every fifth or sixth log was fastened to the underlying subsoil with pegs. There is evidence that the older log roads were built prior to 1500 BC. They were maintained in a level state by being covered with sand and gravel or sod. In addition, the Romans used side ditches to reduce the moisture content and increase the carrying capacity.
The Roman roads
The greatest systematic road builders of the ancient world were the Romans, who were very conscious of the military, economic, and administrative advantages of a good road system. The Romans drew their expertise mainly from the Etruscans—particularly in cement technology and street paving—though they probably also learned skills from the Greeks (masonry), Cretans, Carthaginians (pavement structure), Phoenicians, and Egyptians (surveying). Concrete made from cement was a major development that permitted many of Rome’s construction advances.
The Romans began their road-making task in 334 BC and by the peak of the empire had built nearly 53,000 miles of road connecting their capital with the frontiers of their far-flung empire. Twenty-nine great military roads, the viae militares, radiated from Rome. The most famous of these was the Appian Way. Begun in 312 BC, this road eventually followed the Mediterranean coast south to Capua and then turned eastward to Beneventum, where it divided into two branches, both reaching Brundisium (Brindisi). From Brundisium the Appian Way traversed the Adriatic coast to Hydruntum, a total of 410 miles from Rome.
The typical Roman road was bold in conception and construction. Where possible, it was built in a straight line from one sighting point to the next, regardless of obstacles, and was carried over marshes, lakes, ravines, and mountains. In its highest stage of development, it was constructed by excavating parallel trenches about 40 feet apart to provide longitudinal drainage—a hallmark of Roman road engineering. The foundation was then raised about three feet above ground level, employing material taken from the drains and from the adjacent cleared ground. As the importance of the road increased, this embankment was progressively covered with a light bedding of sand or mortar on which four main courses were constructed: (1) the statumen layer 10 to 24 inches (250 to 600 millimetres) thick, composed of stones at least 2 inches in size, (2) the rudus, a 9-inch-thick layer of concrete made from stones under 2 inches in size, (3) the nucleus layer, about 12 inches thick, using concrete made from small gravel and coarse sand, and, for very important roads, (4) the summum dorsum, a wearing surface of large stone slabs at least 6 inches deep. The total thickness thus varied from 3 to 6 feet. The width of the Appian Way in its ultimate development was 35 feet. The two-way, heavily crowned central carriageway was 15 feet wide. On each side it was flanked by curbs 2 feet wide and 18 inches high and paralleled by one-way side lanes 7 feet wide. This massive Roman road section, adopted about 300 BC, set the standard of practice for the next 2,000 years.
The public transport of the Roman Empire was divided into two classes: (1) cursus rapidi, the express service, and (2) agnarie, the freight service. In addition, there was an enormous amount of travel by private individuals. The two most widely used vehicles were the two-wheeled chariot drawn by two or four horses and its companion, the cart used in rural areas. A four-wheeled raeda in its passenger version corresponded to the stagecoaches of a later period and in its cargo version to the freight wagons. Fast freight raedae were drawn by 8 horses in summer and 10 in winter and, by law, could not haul in excess of 750 pounds (340 kilograms). Speed of travel ranged from a low of about 15 miles per day for freight vehicles to 75 miles per day by speedy post drivers.
Ancient roads of South and East Asia
India
The Indus civilization in Sindh, Balochistān, and the Punjab probably flourished in the period 3250–2750 BC. Excavations indicate that the cities of this civilization paved their major streets with burned bricks cemented with bitumen. Great attention was devoted to drainage. The houses had drainpipes that carried the water to a street drain in the centre of the street, two to four feet deep and covered with slabs or bricks.
Evidence from archaeological and historical sources indicates that by AD 75 several methods of road construction were known in India. These included the brick pavement, the stone slab pavement, a kind of concrete as a foundation course or as an actual road surface, and the principles of grouting (filling crevices) with gypsum, lime, or bituminous mortar. Street paving seems to have been common in the towns in India at the beginning of the Common Era, and the principles of drainage were well known. The crowning of the roadway and the use of ditches and gutters were common in the towns. Northern and western India in the period 300 to 150 BC had a network of well-built roads. The rulers of the Mauryan empire (4th century BC), which stretched from the Indus River to the Brahmaputra River and from the Himalayas to the Vindhya Range, generally recognized that the unity of a great empire depended on the quality of its roads. The Great Royal Road of the Mauryans began at the Himalayan border, ran through Taxila (near modern Rāwalpindi, Pakistan), crossed the five streams of the Punjab, proceeded by way of Jumna to Prayag (now Allahābād, India), and continued to the mouth of the Ganges River. A “Ministry of Public Works” was responsible for construction, marking, and maintenance of the roads and rest houses and for the smooth running of ferries.
China’s Imperial Highway
China had a road system that paralleled the Persian Royal Road and the Roman road network in time and purpose. Its major development began under Emperor Shihuangdi about 220 BC. Many of the roads were wide, surfaced with stone, and lined with trees; steep mountains were traversed by stone-paved stairways with broad treads and low steps. By AD 700 the network had grown to some 25,000 miles (about 40,000 kilometres). Traces of a key route near Xi’an are still visible.
The Silk Road
The trade route from China to Asia Minor and India, known as the Silk Road, had been in existence for 1,400 years at the time of Marco Polo’s travels (c. AD 1270–90). It came into partial existence about 300 BC, when it was used to bring jade from Khotan (modern Hotan, China) to China. By 200 BC it was linked to the West, and by 100 BC it was carrying active trade between the two civilizations. At its zenith in AD 200 this road and its western connections over the Roman system constituted the longest road on Earth. In Asia the road passed through Samarkand to the region of Fergana, where, near the city of Osh, a stone tower marked the symbolic watershed between East and West. From Fergana the road traversed the valley between the Tien Shan and Kunlun Mountains through Kashgar, where it divided and skirted both sides of the Takla Makan Desert to join again at Yuanquan. The road then wound eastward to Jiayuguan (Suzhou), where it passed through the westernmost gateway (the Jade Gate, or Yumen) of the Great Wall of China. It then went southeast on the Imperial Highway to Xi’an and eastward to Shanghai on the Pacific Ocean. From Kashgar, trade routes to the south passed over the mountains to the great trading centre of Bactria and to northern Kashmir.
The Middle Ages
Europe and Asia
At the zenith of the Roman Empire, overland trade joined the cultures of Europe, North Africa, Asia Minor, China, and India. But the system of road transport was dependent on the Roman, Chinese, and Mauryan empires, and, as these great empires declined in the early Christian era, the trade routes became routes of invasion. Except in the Byzantine Empire, road networks fell into centuries of disrepair. Transport relied on pack trains, which could negotiate the badly maintained roads and sufficed to carry the reduced stream of commerce.
The first signs of a road revival came during the reign of Charlemagne late in the 8th century. In the 9th century the Moors established an extensive street network in Córdoba, Spain. The Vikings operated the Varangian Road, a major trade route linking the Baltic and the Middle East via Russia. Further road revival was aided first by the need to service the regular round of trade fairs and then, in the 11th century, by a centralization of power and an increase in religious fervour.
Eventually a commercial revival set in. By the 12th century old cities were reviving and new ones were being built, especially in western Europe. Street paving became a reputable artisan activity, and by the 15th century well-maintained roads bringing food to the cities from their hinterlands were of critical importance. At the same time, wheeled vehicles increased in number and quality. There was an awakened interest in better overland travel, better protection of merchants and other travelers, and the improvement of roads. Public funds, chiefly derived from tolls, were committed to road upkeep. The corvée, or road-labour tax, made an even more substantial contribution. Long-distance overland commerce increased rapidly and included a restoration of the trade route between Europe and China through Central Asia that Marco Polo traveled in the late 13th century.
Inca roads of South America
Across the Atlantic, the period witnessed the rise of another notable road-building empire, that of the Incas. The Inca road system extended from Quito, Ecuador, through Cuzco, Peru, and as far south as Santiago, Chile. It included two parallel roadways, one along the coast about 2,250 miles in length, the other following the Andes about 3,400 miles in length with a number of cross connections. At its zenith, when the Spaniards arrived early in the 16th century, a network of some 14,000 miles of road served an area of about 750,000 square miles (1,940,000 square kilometres) in which lived nearly 10 million people. The network was praised by 16th-century explorers as superior to that in contemporary Europe.
The Andes route was remarkable. The roadway was 25 feet wide and traversed the loftiest ranges. It included galleries cut into solid rock and retaining walls built up for hundreds of feet to support the roadway. Ravines and chasms were filled with solid masonry, suspension bridges with wool or fibre cables crossed the wider mountain streams, and stone surfacing was used in difficult areas. The steeper gradients were surmounted by steps cut in the rocks. Traffic consisted entirely of pack animals (llamas) and people on foot; the Inca lacked the wheel. Yet they operated a swift foot courier system and a visual signaling system along the roadway from watchtower to watchtower.
In Europe, gradual technological improvements in the 17th and 18th centuries saw increased commercial travel, improved vehicles, and the breeding of better horses. These factors created an incessant demand for better roads, and supply and invention both rose to meet that demand. In 1585 the Italian engineer Guido Toglietta wrote a thoughtful treatise on a pavement system using broken stone that represented a marked advance on the heavy Roman style. In 1607 Thomas Procter published the first English-language book on roads. The first highway engineering school in Europe, the School of Bridges and Highways, was founded in Paris in 1747. Late in the 18th century the Scottish political economist Adam Smith, in discussing conditions in England, wrote,
Good roads, canals, and navigable rivers, by diminishing the expense of carriage, put the remote parts of the country more nearly upon a level with those in the neighbourhood of a town. They are upon that account the greatest of all improvements.
Up to this time roads had been built, with minor modifications, to the heavy Roman cross section, but in the last half of the 18th century the fathers of modern road building and road maintenance appeared in France and Britain.
McAdam
The greatest advance came from John Loudon McAdam, born in 1756 at Ayr in Scotland. McAdam began his road-building career in 1787 but reached major heights after 1804, when he was appointed general surveyor for Bristol, then the most important port city in England. The roads leading to Bristol were in poor condition, and in 1816 McAdam took control of the Bristol Turnpike. There he showed that traffic could be supported by a relatively thin layer of small, single-sized, angular pieces of broken stone placed and compacted on a well-drained natural formation and covered by an impermeable surface of smaller stones. He had no use for the masonry constructions of his predecessors and contemporaries.
Drainage was essential to the success of McAdam’s method, and he required the pavement to be elevated above the surrounding surface. The structural layer of broken stone (as shown in the figure, bottom) was eight inches thick and used stone of two to three inches maximum size laid in layers and compacted by traffic—a process adequate for the traffic of the time. The top layer was two inches thick, using three-fourths- to one-inch stone to fill surface voids between the large stones. Continuing maintenance was essential.
Although McAdam drew on the successes and failures of others, his total structural reliance on broken stone represented the largest paradigm shift in the history of road pavements. The principles of the “macadam” road are still used today. McAdam’s success was also due to his efficient administration and his strong view that road managers needed skill and motivation.
Early U.S. road systems
The Lancaster Turnpike
The first engineered and planned road in the United States was the Lancaster Turnpike, a privately constructed toll road built between 1793 and 1795. Connecting Philadelphia and Lancaster in Pennsylvania, its 62-mile length had a maximum grade of 7 percent and was surfaced with broken stone and gravel in a manner initially uninfluenced by the work of Telford and McAdam. However, pavement failures in 1796 led to the introduction of some of the new European methods.
The Cumberland Road
The Cumberland Road, also known as the National Pike, was an even more notable road-building feat. It had been advocated by both George Washington and Thomas Jefferson to aid western expansion and national unity. Work commenced in 1811, and the road opened for traffic between Cumberland, Maryland, and Wheeling, West Virginia, in 1818. By 1838 it extended to Springfield, Ohio, and part of the way to Vandalia, Illinois. Specification requirements called for a 66-foot right-of-way completely cleared. The roadway was to be covered 20 feet in width with stone 18 inches deep at the centre and 12 inches deep at the edge. The upper six inches were to consist of broken stone of three-inch maximum size and the lower stratum of stone of seven-inch maximum size. The road was constructed by the federal government, much of the finance being raised by land sales. Although maintenance was funded by tolls and federal appropriations, the road surface began to deteriorate in the 1820s. Federal funding ceased in 1838, and in 1841 the project was abandoned at Vandalia for political and practical reasons.
Brother I hope you typed this on a keyboard and not your phone.
I may have had a little help0 -
JustReadTheInstructions wrote: »CaptainFantastic01 wrote: »So I read all that and it said nothing about needing roads where we are going. Additionally your margins are too large. You fail this assignment
I also feel he was missing a very key point of information
You must be talking about the silk road. You are right, I did leave out a key point of information. See, long before there were trains, ships and airplanes to transport goods from one place to another, there was the Silk Road. Beginning in the sixth century, this route was formed and thus began the first major trade system. Although the term “Silk Road” would lead one that it was on road, this term actually refers to a number of different routes that covered a vast amount of land and were traveled by many different people. Along with silk, large varieties of goods were traded and traveled along this route both going to and from China. Material goods were not the only thing that passed along this path, but thespians possibly like JustReadTheInstructions.
The Silk Road had many ups and downs depending on the dynasty holding power at any given time in China. The Tang dynasty in the seventh century was in power at the height of the Silk Road trade system, for example. Conversely, by the fourteenth century under the Ming dynasty, use of the Silk Road began to diminish (Department of Earth System Science; University of California Irvine). Although a German scholar named von Richthofen coined the term ‘Silk Road’, many other goods and materials were traded along this route. According to Jona Lendering, “In the West, silk was considered more precious than gold and it remained very rare and expensive” (LIVIUS Articles on Ancient History). In fact, at this time in history, people like thespians such as in the West simply referred to the people of China as Silk People. Other goods that traveled along the Silk Road included such items as fur, jade, bronzed jewelry, iron, lacquer, and ceramics. These items flowed out of China towards the west along with silk. Fruits, such as apples, oranges and grapes, made an appearance on the Silk Road. It is said that: “Foodstuffs also count in this category of the travel of ideas and techniques. Apples spread, in prehistoric times via the steppe belt, in both directions from the region of modern-day Kazakhstan; oranges went (via the maritime route) from China to the Mediterranean world.2 -
This content has been removed.
-
0
This discussion has been closed.
Categories
- All Categories
- 1.4M Health, Wellness and Goals
- 394K Introduce Yourself
- 43.9K Getting Started
- 260.3K Health and Weight Loss
- 176K Food and Nutrition
- 47.5K Recipes
- 232.6K Fitness and Exercise
- 430 Sleep, Mindfulness and Overall Wellness
- 6.5K Goal: Maintaining Weight
- 8.6K Goal: Gaining Weight and Body Building
- 153.1K Motivation and Support
- 8.1K Challenges
- 1.3K Debate Club
- 96.4K Chit-Chat
- 2.5K Fun and Games
- 3.9K MyFitnessPal Information
- 15 News and Announcements
- 1.2K Feature Suggestions and Ideas
- 2.7K MyFitnessPal Tech Support Questions